
Document and analyze legacy code
with new reverse-engineering
technology

Runtime code analysis is a critical missing piece in understanding
the behavior of legacy systems.

Photo by Sigmund on Unsplash

https://unsplash.com/@sigmund?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Modernizing a legacy application is a complex process that requires careful planning
and execution. One of the critical challenges in modernizing a legacy application is the
lack of documentation for codebases.

This prevents new project architects from identifying what code should be addressed
first and understanding the entanglement of existing code behavior. This complexity of
poorly documented and tested codebases brings an added risk to the application
modernization team tasked with improving it.

Runtime code analysis is a critical missing piece in
understanding the behavior of legacy systems.

Common approaches to modernization
The Strangler Pattern is a common approach to
application modernization that involves gradually
replacing parts of monolithic applications with
microservices. As a first pass, developers identify
areas where the application is tightly coupled and
identify potential services that can be extracted
into microservices. This process can reduce the risk
of introducing new services into the system and
ensure that the overall system remains cohesive.

The Strangler Pattern can be difficult to initiate for
developers and architects coming into a new
codebase. It requires a deep understanding of the
dependencies between components. Architects
typically need to analyze the codebase and identify
areas that are highly coupled and can be separated
into distinct services, rather than coming from a
point of institutional knowledge of the codebase.
Onboarding and analyzing the codebase can be
tedious and time-consuming and take months to
complete. In large codebases, it involves reviewing
dependencies between thousands of components
and identifying areas where changes in one
component could have a significant impact on
other downstream components. The challenge for



the developers working in the Strangler Pattern is to ensure that the new microservices
integrate seamlessly with the existing system and do not introduce new problems
resulting in stability or performance issues.

Runtime code analysis and observability are critical analysis tools for software
application modernization projects that are being shown to drastically reduce
onboarding costs, improve delivery quality, and drive business success. As software
applications grow in complexity, the importance of runtime code analysis during the
software analysis and subsequent modernization process will continue to increase.

Runtime code analysis is key

Runtime code analysis tools, like AppMap, provide insights into the codebase before
and during modernization projects. Runtime analysis automatically generates visual
diagrams of the behavior of applications and generates missing internal API
documentation, providing developers with detailed insights into the dependencies
between different components.

Sequence diagram view of runtime code behavior



Runtime analysis also detects latent defects, unexpected dependencies, and security
issues that may not be apparent during static analysis and initial onboarding. These
require resolution for new code to be introduced successfully. By providing detailed
insights into the application's behavior, developers can see if the code has adequately
isolated the targeted business logic.

Runtime Analysis report in AppMap in the code editor

Automated analysis ensures the newly introduced service is performant and secure.
This process can help organizations to achieve better delivery and ensure that their
modernized applications are scalable, effective, and efficient. By detecting defects
early in the development process, runtime code analysis during development reduces
the cost of software development and improves the quality of the final product.

Challenges in using traditional observability to instrument “Dark Code”

Runtime analysis differs from traditional observability because the requirement is to
characterize software without relying on production environments. Runtime analysis is
far less expensive and time-consuming because it doesn't require any instrumentation
and takes minutes to deploy. Large codebases are done in an hour rather than many
days or weeks. Local runtime analysis includes far more granular code behavior details



than traditional hosted observability products for a significantly lower cost to the
business. AppMap natively records these code behavior interactions automatically.

Function calls and loops in AppMap

Furthermore, using products like DataDog, Dynatrace, and AppDynamics for this
purpose can be costly. Deploying observability solutions like OpenTelemetry (OTel)
require the developers to understand their code well enough to know exactly where to
add the necessary instrumentation to debug it. Many OTel projects fail simply because
the developers cannot understand complex legacy codebases well enough to know
where they should be adding instrumentation.

AppMap runtime data can include detailed timing information about function
performance and can help identify the slow paths in your code changes before you
commit them to your project. Runtime analysis works upstream of production and can
integrate with other tools and processes such as CI/CD pipelines. AppMaps can be
exported to commonly used documentation platforms such as Confluence. AppMap
can export automatically generated API documentation to existing repository platforms
such as Postman, SwaggerHub, and others.

Application modernization projects are a boon to consulting engineering companies;
accelerating reverse engineering is the competitive edge companies need to stand



out. Changing team composition and the current economic climate has engineering
teams thinking about accomplishing more with less and moving large complex
modernization projects to third-party vendors with expertise in modernization work.
The economic opportunity for consulting software development organizations in
application modernization is significant.

Vendors looking to onboard client code for modernization projects can bridge the lack
of documentation about the client’s software and deliver results faster.

A key tool for successful onboarding to new customer code and scoping of application
modernization projects is runtime code analysis. Runtime analysis with AppMap
provides invaluable insights into the behavior of applications and can help you deliver
fast improvements to your clients.

To schedule a demo or discuss your organization's needs with us directly, please
contact us at sales@appmap.io or find us in the AppMap Community Slack channel.

References:

Fowler, M. (2016). Strangler Pattern. Martin Fowler.
https://martinfowler.com/bliki/StranglerFigApplication.html

Vlietland, E. V., & Louwman, R. W. (2018). An Exploration of the Strangler Pattern for
Application Modernization. Journal of Software Engineering Research and Development, 6(1),
1-23. doi:10.1186/s40411-018-0056-4

Marinescu, R. (2013). Continuous Integration, Delivery, and Deployment: Reliable and Faster
Software Releases. Springer Science & Business Media.

https://appmap-group.slack.com/ssb/redirect#/shared-invite/email
https://martinfowler.com/bliki/StranglerFigApplication.html

